# Introduction

This protocol describes a method to extract high molecular weight genomic DNA from button mushrooms (Agaricus bisporus) using nuclei isolation, performed as described in Zhang, M. et al., 2012, followed by QIAGEN Genomic-tip purification. Prior to sequencing, 8 µg of genomic DNA was size-selected using the size selection of HMW DNA by semi-selective DNA precipitation protocol Sequencing performance was determined using the MinION, using the Ligation Sequencing Kit to generate sequencing libraries.

# Materials

For nuclei isolation:

- 8 g mushroom gills
- TissueRuptor II and disposable probes
- Trizma base
- KCl
- Na2EDTA
- Spermidine trihydrochloride
- Spermine tetrahydrochloride
- NaOH
- B-mercaptoehanol
- Triton X-100
- Sucrose
- ddH20
- Miracloth
- Cheesecloth
- Funnel
- 50 ml Falcon tubes
- Refrigerated centrifuge with capacity for 50 ml Falcon tubes
- Ice bucket with ice
- P20, P100, P200 and P1000 pipettes, tips and wide-bore pipette tips

For gDNA extraction and purification:

- QIAGEN Blood and Cell Culture DNA Midi Kit
- Isopropanol
- 70% ethanol
- Proteinase K
- Vortex
- 50 ml Falcon tubes
- Refrigerated centrifuge with capacity for 50 ml tubes
- Incubator or water bath with agitation capability and temperature control for 50°C
- TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)
- P20, P100, P200 and P1000 pipettes, tips and wide-bore pipette tips

## Method

## Nuclei isolation:

1. Prepare 10X Homogenisation Buffer (HB) stock as below. Adjust the pH to 9.0-9.4 with NaOH, and store the solution at 4°C**Tip**: When developing this protocol, we made up 1 litre of HB stock and stored it at 4°C for up to a year.

#### HB stock:

| Reagents                    | Concentration (mM) |
|-----------------------------|--------------------|
| Trizma base                 | 100 mM             |
| КСІ                         | 800 mM             |
| Na2EDTA                     | 100 mM             |
| Spermidine trihydrochloride | 10 mM              |
| Spermine tetrahydrochloride | 10 mM              |

1. Prepare approximately 90 ml of 1x Homogenisation Buffer (HB) working solution. Keep the solution at 4°C.

### HB working solution:

| Reagents | Concentration |
|----------|---------------|
| HB stock | lx            |
| Sucrose  | 0.5 M         |

- 1. Prepare two 50 ml tubes per sample and add 20 ml of HB working solution to each.
- 2. Add 4 g of mushroom gills to each tube.
- 3. Homogenise the mushroom sample using the TissueRuptor II at the lowest speed. This will take between 45 seconds to a minute to homogenise
- 4. Add another 20 ml of HB working solution to each tube and invert a few times.
- 5. Transfer the tubes to a fume hood and continue the next steps inside the hood until step 20 due to the  $\beta$ -mercaptoethanol toxicity.
- 6. Add 0.15% (v/v) of  $\beta$ -mercaptoethanol and invert the tubes 10 times to mix.
- 7. Incubate the tubes in a HulaMixer (or equivalent) at 4°C for 10 minutes. If there is no mixer available at 4°C, keep the tubes on ice and gently invert them five times every minute.
- 8. Put a funnel on top of two fresh 50 ml Falcon tubes and add a layer of miracloth and two layers of cheesecloth.
- 9. Pass the solutions from step 9 through the funnel prepared in step 10. We recommend squeezing the miracloth to maximise the nuclei recovery.
- 10. Centrifuge the tubes at 4,000 x g for 20 minutes at 4°C.
- 11. Discard the supernatant.
- 12. Prepare approximately 45 ml of HB washing solution as below and cool to 4°C. HB washing solution:

| Reagents            | Concentration |
|---------------------|---------------|
| HB working solution | 1X            |
| β-mercaptoethanol   | 0.15% (v/v)   |
| Triton X-100        | 0.2% (v/v)    |

1. Add 1 ml HB washing solution to the pellets and gently resuspend the pellets by pipetting up and down with a wide-bore pipette

tip.

- 2. Add 9 ml HB washing solution to both tubes, and gently invert 10 times to mix.
- 3. Centrifuge the tubes at  $3,100 \times g$  for 15 minutes at  $4^{\circ}C$ .
- 4. Discard the supernatant.
- 5. Repeat steps 15-18.
- 6. Add 500  $\mu$ l of 1X HB working solution and gently resuspend the pellet with a wide-bore pipette tip.

#### **DNA extraction:**

- 1. To each tube with isolated nuclei, add 10 ml of buffer G2 and 100  $\mu$ l of proteinase K, before inverting the tube 10 times to mix.
- 2. Incubate at 50°C for 1 hour with gentle mixing (100 RPM). The tube contents should appear homogeneous but if solid particles are still visible, centrifuge the tubes for a minute at 2,000 x g and transfer the supernatant to fresh tubes.
- 3. Equilibrate a Genomic-tip 100/G with 4 ml of buffer QBT.
- 4. Pour one of the tubes with lysate into the Genomic-tip 100/G.
- 5. Once the content of the first tube has passed through, pour the second tube into the Genomic-tip 100/G.
- 6. Purify the lysate according to the standard QIAGEN protocol (steps 3-5, pages 50-51).
- 7. After adding the isopropanol, invert the tubes 10 times and incubate it overnight at  $-20^{\circ}$ C.
- 8. Centrifuge the tube at  $4,000 \times g$  for 30 minutes at  $4^{\circ}C$ .
- 9. Discard the supernatant and add 5 ml of ice-cold 70% ethanol.
- 10. Invert the tube five times and centrifuge at  $4,000 \times g$  for 3 minutes at  $4^{\circ}C$ .
- 11. Discard the supernatant and use a clean tissue to dry the walls of the tube.
- 12. Elute the pellet in 150  $\mu l$  TE buffer.
- 13. **Optional step:** Take 60 μl of the gDNA and size select your sample using the size selection protocol. About 60% of gDNA is expected to be recovered.

## Results

- Yield: 15-25 μg
- A260/280: 1.92
- A260/230: 2.14



# Sequencing performance

The library for nanopore sequencing was prepared using the Ligation Sequencing Kit.

The flow cell was washed using the Flow Cell Wash Kit (EXP-WSH004) and the library re-loaded after ~20 hours of sequencing to maximise flow cell output. Read length profile:

