Version for device: MinION
Overview of the protocol
This kit is soon to be discontinued and we recommend all customers to upgrade to the latest chemistry for their relevant kit which is available on the Store. If customers require further support for any ongoing critical experiments using a Legacy product, please contact Customer Support via email: support@nanoporetech.com. For further information on please see the product update page.
We recommend CRISPR/Cas targeted sequencing if the user:
* Note: This is known as ‘tiling’ an ROI.
This protocol can be used for any probe design method (details of which can be found in the Targeted, amplification-free DNA sequencing using CRISPR/Cas info sheet). The recommended ‘excision approach’ and ‘single cut and read out’ method can follow the main flow of this protocol (shown in Figure 1). The ‘tiling’ approach requires the alterations to the protocol described in the Important (orange) boxes in the library preparation section. The main difference with the tiling approach is that both pools of probes need to be prepared separately (RNP complex formation, cleavage and dA-tailing and adapter ligation performed in separate tubes) then pooled during the final AMPure XP bead purification (shown in Figure 2).
Figure 1. Cas9 targeted sequencing protocol using the 'excision approach' or 'single cut and read out'.
Figure 2. Cas9 targeted sequencing protocol using the 'tiling' approach
For more details about the Cas9 targeted sequencing approach, how to design probes, and general expectations and guidance, please refer to the Targeted, amplification-free DNA sequencing using CRISPR/Cas info sheet. We strongly recommend that you read it before proceeding with your targeted sequencing experiments.
This protocol describes how to carry out sequencing of genomic DNA using the Ligation Sequencing Kit (SQK-LSK109) with enrichment of specific genomic regions using CRISPR/Cas. For users with no previous nanopore sequencing experience, we recommend that a Lambda control experiment is completed first to become familiar with the technology.
Prepare for your experiment
You will need to:
- Extract your DNA, and check its length, quantity and purity.
The quality checks performed during the protocol are essential in ensuring experimental success.
- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run
Library preparation
Figure 1. shows and explains the biochemical steps used to prepare your DNA library using a SQK-LSK109 kit, plus several third party reagents.
Figure 1. Cas9 targeted library preparation for sequencing. The steps below correspond to the steps in the figure.
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Start the EPI2ME software and select a workflow for further analysis (this step is optional)
Step | Instructions |
---|---|
1. Extract and prepare DNA | Extraction methods |
2. Design probes | Targeted, amplification-free DNA sequencing using CRISPR/Cas (Probe design) |
3. QC input DNA | Input DNA/RNA QC |
4. Perform enrichment, and prepare sequencing library | Cas9 Sequencing Kit (SQK-CS9109) - this is the protocol using the Oxford Nanopore Technologies Cas9 Sequencing Kit for Cas9 enrichment and library preparation Cas9 targeted sequencing - this is the protocol that uses the Ligation Sequencing Kit (SQK-LSK109) for library preparation after Cas9 enrichment. It requires more 3rd party reagent than if doing library preparation using the Cas9 Sequencing Kit |
5. Sequence on device | Cas9 Sequencing Kit (SQK-CS9109) Cas9 targeted sequencing |
6. Take basecalled FASTQ files into analysis pipeline | Cas9 Targeted Sequencing Tutorial (EPI2ME Labs) |
7. Assess success of experiment and feed back into probe design and quality of input |
This protocol should only be used in combination with:
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (µl) |
---|---|---|---|---|
DNA CS | DCS | Yellow | 1 | 50 |
Adapter Mix | AMX | Green | 1 | 40 |
Ligation Buffer | LNB | Clear | 1 | 200 |
L Fragment Buffer | LFB | White cap, orange stripe on label | 2 | 1,800 |
S Fragment Buffer | SFB | Grey | 2 | 1,800 |
Sequencing Buffer | SQB | Red | 2 | 300 |
Elution Buffer | EB | Black | 1 | 200 |
Loading Beads | LB | Pink | 1 | 360 |
Name | Acronym | Cap colour | No. of vials | Fill volume per vial (μl) |
---|---|---|---|---|
Flush Buffer | FB | Blue | 6 | 1,170 |
Flush Tether | FLT | Purple | 1 | 200 |
Unsheared, high-molecular weight DNA, as isolated e.g., using the Qiagen Genomic DNA Kit, at ≥210 ng/µl by Qubit, and stored in TE (pH 8.0) or similar, or nuclease-free water.
Carryover of 1 mM EDTA from TE will not significantly affect this protocol; however, care should be taken to reduce other contaminants, such as detergents, phenol, chloroform, and salts.
Use wide-bore tips (or regular pipette tips with the narrow ends cut off) where possible to minimise shearing of long DNA.
CutSmart Buffer
Please note that the RNP formation, dephosphorylation, cleavage and dA-tailing steps are performed in CutSmart buffer (NEB Cat # B7204), and the ligation performed in the LNB buffer from LSK109. CutSmart buffer is provided with the NEB Quick Dephosphorylation Kit, but for scaling up the protocol, additional buffer may be ordered directly from NEB (Cat # B7204). The buffers provided with the other enzymes listed above should not be used.
Tris-EDTA (TE) Buffer
We strongly recommend TE at pH 7.5, rather than pH 8.0, for the long-term stability of RNA oligos in storage.
We recommend using synthetic crRNA and tracrRNA from IDT, which are of sufficient purity and carry modifications that confer stability and nuclease resistance. For this reason we caution against using single-guide RNAs (sgRNAs).
Individual crRNAs and tracrRNA should be resuspended at 100 µM each in TE, pH 7.5, aliquoted to avoid freeze-thawing, and stored at –20° C for up to two weeks or –80° C if stored long-term. The crRNAs/tracrRNAs can be freeze-thawed a maximum of five times.
crRNAs may be pooled to make panels for generating multiple cuts in a single reaction. To pool crRNAs, we recommend dispensing equal volumes of each crRNA (up to 100 crRNAs, each at 100 µM) into a separate 1.5 ml Eppendorf DNA LoBind tube to make an equimolar crRNA mix.
Computer requirements and software
Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1B IT requirements document.
The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. For more information refer to the MinION Mk1C IT requirements document.
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within 12 weeks of purchasing for MinION/GridION/PromethION or within four weeks of purchasing Flongle Flow Cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.
Flow cell | Minimum number of active pores covered by warranty |
---|---|
Flongle Flow Cell | 50 |
MinION/GridION Flow Cell | 800 |
PromethION Flow Cell | 5000 |
Preparing the Cas9 ribonucleoprotein complexes (RNPs)
The formula below prepares a pool of RNPs for making multiple excisions in a single reaction. If using a tiling approach for probe design (a method for designing probes in two separate overlapping pools to cover a target region >20 kb), prepare 2x RNP complexes, one for each pool of crRNA probes. For more information about tiling, please refer to the Targeted, amplification-free DNA sequencing using CRISPR/Cas info sheet.
Upon receipt, we recommend aliquoting individual probes or pools of crRNAs for storage, to minimise freeze-thawing.
Panels of RNPs may be formed ahead of time and stored at 4°C for up to a week, or at -80°C for up to a month with no discernible loss of activity. However, we recommend making a fresh RNP complex for every experiment if possible.
The following protocol applies to a single crRNA. For panels of multiple crRNAs, see “Notes on multiple crRNAs” below.
If you have validated a set of crRNA probes that are always run together, we recommend pooling all crRNA probes and then aliquoting that pool and freezing each aliquot at -80°C. Each time you run a Cas9 experiment and need to make an RNP complex, take out a crRNA pool aliquot and combine with the tracrRNA.
Reagent | Volume |
---|---|
Nuclease-Free Duplex Buffer (IDT) | 8 µl |
crRNA pool (100 µM, equimolar) | 1 µl |
tracrRNA (100 µM) | 1 µl |
Total | 10 µl |
Reagent | Volume |
---|---|
Annealed crRNA•tracrRNA pool (10 µM) | 10 µl (Step 4, above) |
10x NEB CutSmart buffer | 10 µl |
Nuclease-free water | 79.2 µl |
HiFi Cas9 (62 µM) | 0.8 µl |
Total | 100 µl |
Note: Please refer to the Tip below for scaling down this RNP mix.
Number of reactions | 3 | 5 | 10 |
---|---|---|---|
Components | Volume (µl) | Volume (µl) | Volume (µl) |
Annealed crRNA•tracrRNA pool (10 µM) (Step 1) | 3 | 5 | 10 |
10x NEB CutSmart buffer | 3 | 5 | 10 |
Nuclease-free water | 23.7 | 39.6 | 79.2 |
HiFi Cas9 (62 µM) | 0.3 | 0.4 | 0.8 |
Total | 30 | 50 | 100 |
Dephosphorylating genomic DNA
If using a tiling approach for probe design (a method for designing probes in two separate overlapping pools to cover a target region >20 kb), and have just produced 2x separate RNP complexes, users need to perform the dephosphorylation, Cas9 cleavage and adapter ligation step twice (one reaction per pool of probes). For more information about tiling, please refer to the Targeted, amplification-free DNA sequencing using CRISPR/Cas info sheet.
Reagent | Volume |
---|---|
NEB CutSmart Buffer (10x) | 3 µl |
HMW genomic DNA (at ≥ 210 ng/µl)* | 24 µl |
Total | 27 µl |
This process cleaves target and dA-tails all available DNA ends in one step, activating the Cas9 cut sites for ligation.
Reagent | Volume |
---|---|
Dephosphorylated genomic DNA sample (Step 2) | 30 µl |
Cas9 RNPs (Step 1) | 10 µl |
10 mM dATP | 1 µl |
NEB Taq polymerase | 1 µl |
Total | 42 µl |
Adapter ligation
Reagent | Volume |
---|---|
Ligation Buffer (LNB) | 20 µl |
Nuclease-free water | 3 µl |
NEBNext Quick T4 DNA Ligase | 10 µl |
Adapter Mix (AMX)* | 5 µl |
Total | 38 µl |
Note: The Adapter Mix (AMX) must be added last and immediately before the ligation step.
A white precipitate may form upon addition of the adapter ligation mix to the dA-tailed DNA. Adding the ligation mixture in two parts helps to reduce precipitation. However, the presence of a precipitate does not indicate failure of ligation of the sequencing adapter to target molecule ends.
AMPure XP bead purification
Complete steps 1 and 2 below, then pool the samples together into a single tube, then add 0.3x (96 µl) of AMPure XP beads. For more information about tiling, please refer to the Targeted, amplification-free DNA sequencing using CRISPR/Cas info sheet.
Note: To retain DNA fragments shorter than 3 kb (by purifying fragments of all sizes), use one tube of use Short Fragment Buffer (SFB) at room temperature, mix by vortexing, spin down, and place on ice. To enrich for DNA fragments of 3 kb or longer, use one tube of Long Fragment Buffer (LFB) at room temperature mix by vortexing, spin down and place on ice.
Note: For targets >30 kb, we recommend increasing the elution time to 30 minutes.
Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX001), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer (SQB) and Loading Beads (LB), required for loading the libraries onto flow cells.
Priming and loading the SpotON flow cell
Press down firmly on the flow cell to ensure correct thermal and electrical contact.
This step can be omitted if the flow cell has been checked previously.
See the flow cell check instructions in the MinKNOW protocol for more information.
Note: Visually check that there is continuous buffer from the priming port across the sensor array.
Reagent | Volume per flow cell |
---|---|
Sequencing Buffer (SQB) | 37.5 µl |
Loading Beads (LB), mixed immediately before use | 25.5 µl |
DNA library | 12 µl |
Total | 75 µl |
Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer II (SBII) and Loading Beads II (LBII) because the fuel in the buffer will start to be consumed by the adapter.
We recommend leaving the light shield on the flow cell when library is loaded, including during any washing and reloading steps. The shield can be removed when the library has been removed from the flow cell.
Carefully place the leading edge of the light shield against the clip.
Note: Do not force the light shield underneath the clip.
Gently lower the light shield onto the flow cell. The light shield should sit around the SpotON cover, covering the entire top section of the flow cell.
Data acquisition and basecalling
For a full overview of nanopore data analysis, which includes options for basecalling and post-basecalling analysis, please refer to the Data Analysis document.
The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. There are multiple options for how to carry out sequencing:
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section.
Follow the instructions in the MinION Mk1B user manual or the MinION Mk1D user manual.
Follow the instructions in the MinION Mk1C user manual.
Follow the instructions in the GridION user manual.
Follow the instructions in the PromethION user manual or the PromethION 2 Solo user manual.
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section. When setting your experiment parameters, set the Basecalling tab to OFF. After the sequencing experiment has completed, follow the instructions in the Post-run analysis section of the MinKNOW protocol.
The Duty Time feature in the MinKNOW software can be used to judge the quality of your experiment. The duty time plot shows the distribution of channel states over time, grouped by time chunks, or 'buckets'. The basic view shows the five main channel states: Sequencing, Pore, Recovering, Inactive, and Unclassified. Clicking the "More" button shows a more detailed breakdown of channel states.
It is recommended to observe the duty time plot populating over the first 30 min-1 hr of the sequencing run. By this time, the channel state distribution will give an indication whether the DNA library is of a good quality, and whether the flow cell is performing well.
Note: The Duty Time plots will be noticeably different to a conventional SQK-LSK109 run. A much smaller percentage of pores will be observed as Sequencing/Strand.
If Active Channel Selection is enabled during the run, the software instantly switches to a new channel in the group if a channel is in the “Saturated” or “Multiple” state, or after ~5 minutes if a channel is “Recovering”. This feature maximises the number of channels sequencing at the start of the experiment, however this may also result in an artificially high number of "Sequencing" or "Pore" channels in the duty time plot. For this reason, we recommend referring to the Mux Scan Results plot, which shows the true distribution of channel states at the point of the most recent mux scan.
As discussed above, the user should expect a lower proportion of pores in Sequencing compared to a standard SQK-LSK109 run, while the total number of available pores should be roughly consistent between a Cas9 targeted sequencing experiment and SQK-LSK109 experiment.
FLO-MIN106 Duty time plot for a Cas9 targeted sequencing experiment using a human gene. From the Duty Time plot, there is an equivalent number of active pores between a SQK-LSK109 run and Cas9 taregeted sequencing run. In a Cas9 experiment, the sequencing pore is roughly 5-15% (light green) of the total number of pores.
Downstream analysis
There are several options for further analysing your basecalled data:
For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.
Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.
If a data analysis method for your research question is not provided in any of the resources above, please refer to the resource centre and search for bioinformatics tools for your application. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.
Flow cell reuse and returns
The Flow Cell Wash Kit protocol is available on the Nanopore Community.
Instructions for returning flow cells can be found here.
Issues during DNA/RNA extraction and library preparation
We also have an FAQ section available on the Nanopore Community Support section.
If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.
Observation | Possible cause | Comments and actions |
---|---|---|
Low DNA purity (Nanodrop reading for DNA OD 260/280 is <1.8 and OD 260/230 is <2.0–2.2) | The DNA extraction method does not provide the required purity | The effects of contaminants are shown in the Contaminants document. Please try an alternative extraction method that does not result in contaminant carryover. Consider performing an additional SPRI clean-up step. |
Low RNA integrity (RNA integrity number <9.5 RIN, or the rRNA band is shown as a smear on the gel) | The RNA degraded during extraction | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page. |
RNA has a shorter than expected fragment length | The RNA degraded during extraction | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page. We recommend working in an RNase-free environment, and to keep your lab equipment RNase-free when working with RNA. |
Observation | Possible cause | Comments and actions |
---|---|---|
Low recovery | DNA loss due to a lower than intended AMPure beads-to-sample ratio | 1. AMPure beads settle quickly, so ensure they are well resuspended before adding them to the sample. 2. When the AMPure beads-to-sample ratio is lower than 0.4:1, DNA fragments of any size will be lost during the clean-up. |
Low recovery | DNA fragments are shorter than expected | The lower the AMPure beads-to-sample ratio, the more stringent the selection against short fragments. Please always determine the input DNA length on an agarose gel (or other gel electrophoresis methods) and then calculate the appropriate amount of AMPure beads to use. |
Low recovery after end-prep | The wash step used ethanol <70% | DNA will be eluted from the beads when using ethanol <70%. Make sure to use the correct percentage. |
Issues during the sequencing run
We also have an FAQ section available on the Nanopore Community Support section.
If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | An air bubble was introduced into the nanopore array | After the Flow Cell Check it is essential to remove any air bubbles near the priming port before priming the flow cell. If not removed, the air bubble can travel to the nanopore array and irreversibly damage the nanopores that have been exposed to air. The best practice to prevent this from happening is demonstrated in this video. |
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | The flow cell is not correctly inserted into the device | Stop the sequencing run, remove the flow cell from the sequencing device and insert it again, checking that the flow cell is firmly seated in the device and that it has reached the target temperature. If applicable, try a different position on the device (GridION/PromethION). |
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | Contaminations in the library damaged or blocked the pores | The pore count during the Flow Cell Check is performed using the QC DNA molecules present in the flow cell storage buffer. At the start of sequencing, the library itself is used to estimate the number of active pores. Because of this, variability of about 10% in the number of pores is expected. A significantly lower pore count reported at the start of sequencing can be due to contaminants in the library that have damaged the membranes or blocked the pores. Alternative DNA/RNA extraction or purification methods may be needed to improve the purity of the input material. The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. |
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW shows "Script failed" | Restart the computer and then restart MinKNOW. If the issue persists, please collect the MinKNOW log files and contact Technical Support. If you do not have another sequencing device available, we recommend storing the flow cell and the loaded library at 4°C and contact Technical Support for further storage guidance. |
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
Observation | Possible cause | Comments and actions |
---|---|---|
Shorter than expected read length | Unwanted fragmentation of DNA sample | Read length reflects input DNA fragment length. Input DNA can be fragmented during extraction and library prep. 1. Please review the Extraction Methods in the Nanopore Community for best practice for extraction. 2. Visualise the input DNA fragment length distribution on an agarose gel before proceeding to the library prep. In the image above, Sample 1 is of high molecular weight, whereas Sample 2 has been fragmented. 3. During library prep, avoid pipetting and vortexing when mixing reagents. Flicking or inverting the tube is sufficient. |
Observation | Possible cause | Comments and actions |
---|---|---|
Large proportion of unavailable pores (shown as blue in the channels panel and pore activity plot) The pore activity plot above shows an increasing proportion of "unavailable" pores over time. |
Contaminants are present in the sample | Some contaminants can be cleared from the pores by the unblocking function built into MinKNOW. If this is successful, the pore status will change to "sequencing pore". If the portion of unavailable pores stays large or increases: 1. A nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) can be performed, or 2. Run several cycles of PCR to try and dilute any contaminants that may be causing problems. |
Observation | Possible cause | Comments and actions |
---|---|---|
Large proportion of inactive/unavailable pores (shown as light blue in the channels panel and pore activity plot. Pores or membranes are irreversibly damaged) | Air bubbles have been introduced into the flow cell | Air bubbles introduced through flow cell priming and library loading can irreversibly damage the pores. Watch the Priming and loading your flow cell video for best practice |
Large proportion of inactive/unavailable pores | Certain compounds co-purified with DNA | Known compounds, include polysaccharides, typically associate with plant genomic DNA. 1. Please refer to the Plant leaf DNA extraction method. 2. Clean-up using the QIAGEN PowerClean Pro kit. 3. Perform a whole genome amplification with the original gDNA sample using the QIAGEN REPLI-g kit. |
Large proportion of inactive/unavailable pores | Contaminants are present in the sample | The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. |
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
Observation | Possible cause | Comments and actions |
---|---|---|
Temperature fluctuation | The flow cell has lost contact with the device | Check that there is a heat pad covering the metal plate on the back of the flow cell. Re-insert the flow cell and press it down to make sure the connector pins are firmly in contact with the device. If the problem persists, please contact Technical Services. |
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW shows "Failed to reach target temperature" | The instrument was placed in a location that is colder than normal room temperature, or a location with poor ventilation (which leads to the flow cells overheating) | MinKNOW has a default timeframe for the flow cell to reach the target temperature. Once the timeframe is exceeded, an error message will appear and the sequencing experiment will continue. However, sequencing at an incorrect temperature may lead to a decrease in throughput and lower q-scores. Please adjust the location of the sequencing device to ensure that it is placed at room temperature with good ventilation, then re-start the process in MinKNOW. Please refer to this link for more information on MinION temperature control. |
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |
Purchase a MinION Starter Pack from Avantor to get full community access and benefit from:
Already have a Nanopore Community account?
Log in hereRequest a call with our experts for detailed advice on implementing nanopore sequencing.
Request a callVisit our microbial sequencing spotlight page on vwr.com.
Microbial sequencingWe use cookies and similar technologies on our websites to help provide you with the best possible online experience.
By using our sites and apps, you agree that we may store and access cookies and similar technologies on your device.