Version for device: MinION
Overview of the protocol
This protocol is recommended for users who:
This protocol describes how to carry out sequencing of cDNA using a reverse transcription and stand-switching method and the Ligation Sequencing Kit V14 (SQK-LSK114).
This protocol requires the use of three oligo primers to be ordered from a third-party (e.g. IDT):
Oligo | Sequence (5' to 3') |
---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC |
Note: mG = 2' O-Methyl RNA bases.
Using this strand-switching method allows for high yields of cDNA library generation from RNA, while also selecting for full-length transcripts.
Steps in the sequencing workflow:
Prepare for your experiment
You will need to:
Library preparation
You will need to:
Sequencing and analysis
You will need to:
- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- (Optional): Start the EPI2ME software and select a workflow for further analysis, e.g. Fastq yeast transcriptome analysis
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page.
Please note that deviating from the standard analysis settings can result in changes to the analysis output.
This protocol should only be used in combination with:
If using alternative cDNA preparation methods, start the protocol with 70–200 fmol of pre-prepared cDNA at the cDNA repair and end-prep step.
Oligo | Sequence (5' to 3') | Purity recommended | Dilution required |
---|---|---|---|
VN Primer | /5phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN | HPLC | 2 µM |
Strand-switching Primer | TTTCTGTTGGTGCTGATATTGCTmGmGmG | HPLC | 10 µM |
PR2 Primer | /5Phos/TTTCTGTTGGTGCTGATATTGC | HPLC | 10 µM |
Note: mG = 2' O-Methyl RNA bases.
Note: Please ensure your primer oligos are ordered at HPLC purity level for optimal results.
If ordering from IDT, the primer oligos will need to be ordered at a minimum scale of 100 nmole to enable HPLC purification.
It is important that the input RNA meets the quantity and quality requirements. Using too little or too much RNA, or RNA of poor quality (e.g. fragmented or containing chemical contaminants) can affect your library preparation.
For instructions on how to perform quality control of your RNA sample, please read the Input DNA/RNA QC protocol.
For further information on using RNA as input, please read the links below.
These documents can also be found in the DNA/RNA Handling page.
For customers new to nanopore sequencing, we recommend buying the NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7180S or E7180L), which contains all the NEB reagents needed for use with the Ligation Sequencing Kit.
Please note, for this protocol, NEBNext FFPE DNA Repair Mix and NEBNext FFPE DNA Repair Buffer are not required.
We have validated and recommend the use of all the third-party reagents used in this protocol. Alternatives have not been tested by Oxford Nanopore Technologies.
For all third-party reagents, we recommend following the manufacturer's instructions to prepare the reagents for use.
Note: We are in the process of reformatting our kits with single-use tubes into a bottle format.
Single-use tubes format:
Bottle format:
Note: This Product Contains AMPure XP Reagent Manufactured by Beckman Coulter, Inc. and can be stored at -20°C with the kit without detriment to reagent stability.
Note: The DNA Control Sample (DCS) is a 3.6 kb standard amplicon mapping the 3' end of the Lambda genome.
Computer requirements and software
Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1B IT requirements document.
The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. For more information refer to the MinION Mk1C IT requirements document.
Sequencing on a MinION Mk1D requires a high-spec computer or laptop to keep up with the rate of data acquisition. For more information, refer to the MinION Mk1D IT requirements document.
The MinKNOW software controls the nanopore sequencing device, collects sequencing data and basecalls in real time. You will be using MinKNOW for every sequencing experiment to sequence, basecall and demultiplex if your samples were barcoded.
For instructions on how to run the MinKNOW software, please refer to the MinKNOW protocol.
The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome, barcoding, or taxonomic classification. You will use the EPI2ME platform only if you would like further analysis of your data post-basecalling.
For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to this link.
We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within 12 weeks of purchasing for MinION/GridION/PromethION or within four weeks of purchasing Flongle Flow Cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.
Flow cell | Minimum number of active pores covered by warranty |
---|---|
Flongle Flow Cell | 50 |
MinION/GridION Flow Cell | 800 |
PromethION Flow Cell | 5000 |
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied VN Primer diluted to 2 µM | ✓ | ✓ | ✓ |
User-supplied Strand-Switching Primer diluted to 10 µM | ✓ | ✓ | ✓ |
10 mM dNTP solution | ✓ | ✓ | ✓ |
RNaseOUT | Not frozen | ✓ | ✓ |
Maxima H Minus Reverse Transcriptase | Not frozen | ✓ | ✓ |
Maxima H Minus 5x RT Buffer | ✓ | ✓ | Mix by vortexing |
Reagent | Volume |
---|---|
RNA input (100 ng Poly(A)+ RNA or 1 μg of total RNA) from step above | 7.5 μl |
VN Primer diluted to 2 μM | 2.5 μl |
10 mM dNTPs | 1 μl |
Total volume | 11 μl |
Reagent | Volume |
---|---|
5x RT Buffer | 4 μl |
RNaseOUT | 1 μl |
Nuclease-free water | 1 μl |
Strand-Switching Primer diluted to 10 µM | 2 μl |
Total | 8 μl |
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Reverse transcription and strand-switching | 42°C | 90 mins | 1 |
Heat inactivation | 85°C | 5 mins | 1 |
Hold | 4°C | ∞ |
Reagent | 1. Thaw at room temperature | 2. Briefly spin down | 3. Mix well by pipetting |
---|---|---|---|
User-supplied PR2 Primer diluted to 10 µM | ✓ | ✓ | ✓ |
RNase Cocktail Enzyme Mix | Not frozen | ✓ | ✓ |
LongAmp Taq 2X Master Mix | ✓ | ✓ | ✓ |
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
Reagent | Volume |
---|---|
2x LongAmp Taq Master Mix | 25 μl |
PR2 Primer diluted to 10 μM | 2 μl |
Reverse-transcribed sample from above | 20 μl |
Nuclease-free water | 3 μl |
Total | 50 μl |
Cycle step | Temperature | Time | No. of cycles |
---|---|---|---|
Denaturation | 94 °C | 1 mins | 1 |
Annealing | 50 °C | 1 mins | 1 |
Extension | 65 °C | 15 mins | 1 |
Hold | 4 °C | ∞ |
If the pellet was disturbed, wait for beads to pellet again before removing the ethanol.
Recovery aim for the samples after RNA degradation and second strand synthesis is 70–200 fmol (~70–200 ng if your sample is 1.5 kb).
cDNA repair and end-prep
For optimal performance, NEB recommend the following:
Thaw all reagents on ice.
Ensure the reagents are well mixed.
Note: Do not vortex the Ultra II End Prep Enzyme Mix.
Always spin down tubes before opening for the first time each day.
The NEBNext Ultra II End Prep Reaction Buffer may contain a white precipitate. If this occurs, allow the mixture(s) to come to room temperature and pipette the buffer several times to break up the precipitate, followed by a quick vortex to mix.
Reagent | Volume |
---|---|
cDNA sample | 20 µl |
Nuclease-free water | 30 µl |
Ultra II End-prep reaction buffer | 7 µl |
Ultra II End-prep enzyme mix | 3 µl |
Total | 60 µl |
Adapter ligation and clean-up
Between each addition, pipette mix 10-20 times.
Reagent | Volume |
---|---|
cDNA sample from the previous step | 60 µl |
Ligation Adapter (LA) | 5 µl |
Ligation Buffer (LNB) | 25 µl |
NEBNext Quick T4 DNA Ligase | 10 µl |
Total | 100 µl |
Note: Take care when removing the supernatant, the viscosity of the buffer can contribute to loss of beads from the pellet.
Dispose of the pelleted beads
Fragment library length | Flow cell loading amount |
---|---|
Very short (<1 kb) | 100 fmol |
Short (1-10 kb) | 35–50 fmol |
Long (>10 kb) | 300 ng |
Note: If the library yields are below the input recommendations, load the entire library.
If required, we recommend using a mass to mol calculator such as the NEB calculator.
This is to ensure high pore occupancy of >95% is reached. How to calculate pore occupancy can be found here.
We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short-term storage or repeated use, for example, re-loading flow cells between washes.
For single use and long-term storage of more than 3 months, we recommend storing libraries at -80°C in Eppendorf DNA LoBind tubes.
Depending on how many flow cells the library will be split across, more Elution Buffer (EB) than what is supplied in the kit will be required.
Priming and loading the MinION and GridION Flow Cell
We recommend all new users watch the 'Priming and loading your flow cell' video before your first run.
Note: We do not recommend using any other albumin type (e.g. recombinant human serum albumin).
Note: We are in the process of reformatting our kits with single-use tubes into a bottle format. Please follow the instructions for your kit format.
Single-use tubes format:
Add 5 µl Bovine Serum Albumin (BSA) at 50 mg/ml and 30 µl Flow Cell Tether (FCT) directly to a tube of Flow Cell Flush (FCF).
Bottle format:
In a suitable tube for the number of flow cells, combine the following reagents:
Reagent | Volume per flow cell |
---|---|
Flow Cell Flush (FCF) | 1,170 µl |
Bovine Serum Albumin (BSA) at 50 mg/ml | 5 µl |
Flow Cell Tether (FCT) | 30 µl |
Total volume | 1,205 µl |
This step can be omitted if the flow cell has been checked previously.
See the flow cell check instructions in the MinKNOW protocol for more information.
Note: Visually check that there is continuous buffer from the priming port across the sensor array.
We recommend using the Library Beads (LIB) for most sequencing experiments. However, the Library Solution (LIS) is available for more viscous libraries.
Reagent | Volume per flow cell |
---|---|
Sequencing Buffer (SB) | 37.5 µl |
Library Beads (LIB) mixed immediately before use, or Library Solution (LIS), if using | 25.5 µl |
DNA library | 12 µl |
Total | 75 µl |
We recommend leaving the light shield on the flow cell when library is loaded, including during any washing and reloading steps. The shield can be removed when the library has been removed from the flow cell.
Carefully place the leading edge of the light shield against the clip.
Note: Do not force the light shield underneath the clip.
Gently lower the light shield onto the flow cell. The light shield should sit around the SpotON cover, covering the entire top section of the flow cell.
Data acquisition and basecalling
For a full overview of nanopore data analysis, which includes options for basecalling and post-basecalling analysis, please refer to the Data Analysis document.
The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. Please ensure MinKNOW is installed on your computer or device. There are multiple options for how to carry out sequencing:
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section.
Follow the instructions in the MinION Mk1B user manual or the MinION Mk1D user manual.
Follow the instructions in the MinION Mk1C user manual.
Follow the instructions in the GridION user manual.
Follow the instructions in the PromethION user manual or the PromethION 2 Solo user manual.
Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section. When setting your experiment parameters, set the Basecalling tab to OFF. After the sequencing experiment has completed, follow the instructions in the Post-run analysis section of the MinKNOW protocol.
Downstream analysis
Data ananlysis for the Ligation sequencing V14 - Direct cDNA sequencing (SQK-LSK114) is currently incompatible with the default setup for wf-transcriptomes.
Pychopper currently miss-classsifies The reads generated with Direct cDNA Sequencing are not being classified correctly in the analysis workflow, leading to ≥80% data loss of full-read transcripts following analysis with wf-transcriptomes.
Note: Experienced users may be able to disable Pychopper during wf-transcriptomes analysis setup to circumvent this issue using the infomation available in the wf-transcriptomes GitHub page and the Pychopper GitHub page.
Please note that deviating from the standard analysis settings can result in changes to the analysis output.
There are several options for further analysing your basecalled data:
For in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME, which are available in the EPI2ME section of the Community. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.
Oxford Nanopore Technologies' Research division has created a number of analysis tools, that are available in the Oxford Nanopore GitHub repository. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.
If a data analysis method for your research question is not provided in any of the resources above, please refer to the resource centre and search for bioinformatics tools for your application. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.
Flow cell reuse and returns
The Flow Cell Wash Kit protocol is available on the Nanopore Community.
Instructions for returning flow cells can be found here.
Issues during DNA/RNA extraction and library preparation
We also have an FAQ section available on the Nanopore Community Support section.
If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.
Observation | Possible cause | Comments and actions |
---|---|---|
Low DNA purity (Nanodrop reading for DNA OD 260/280 is <1.8 and OD 260/230 is <2.0–2.2) | The DNA extraction method does not provide the required purity | The effects of contaminants are shown in the Contaminants document. Please try an alternative extraction method that does not result in contaminant carryover. Consider performing an additional SPRI clean-up step. |
Low RNA integrity (RNA integrity number <9.5 RIN, or the rRNA band is shown as a smear on the gel) | The RNA degraded during extraction | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page. |
RNA has a shorter than expected fragment length | The RNA degraded during extraction | Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number document. Further information can be found in the DNA/RNA Handling page. We recommend working in an RNase-free environment, and to keep your lab equipment RNase-free when working with RNA. |
Observation | Possible cause | Comments and actions |
---|---|---|
Low recovery | DNA loss due to a lower than intended AMPure beads-to-sample ratio | 1. AMPure beads settle quickly, so ensure they are well resuspended before adding them to the sample. 2. When the AMPure beads-to-sample ratio is lower than 0.4:1, DNA fragments of any size will be lost during the clean-up. |
Low recovery | DNA fragments are shorter than expected | The lower the AMPure beads-to-sample ratio, the more stringent the selection against short fragments. Please always determine the input DNA length on an agarose gel (or other gel electrophoresis methods) and then calculate the appropriate amount of AMPure beads to use. |
Low recovery after end-prep | The wash step used ethanol <70% | DNA will be eluted from the beads when using ethanol <70%. Make sure to use the correct percentage. |
Issues during the sequencing run
We also have an FAQ section available on the Nanopore Community Support section.
If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | An air bubble was introduced into the nanopore array | After the Flow Cell Check it is essential to remove any air bubbles near the priming port before priming the flow cell. If not removed, the air bubble can travel to the nanopore array and irreversibly damage the nanopores that have been exposed to air. The best practice to prevent this from happening is demonstrated in this video. |
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | The flow cell is not correctly inserted into the device | Stop the sequencing run, remove the flow cell from the sequencing device and insert it again, checking that the flow cell is firmly seated in the device and that it has reached the target temperature. If applicable, try a different position on the device (GridION/PromethION). |
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check | Contaminations in the library damaged or blocked the pores | The pore count during the Flow Cell Check is performed using the QC DNA molecules present in the flow cell storage buffer. At the start of sequencing, the library itself is used to estimate the number of active pores. Because of this, variability of about 10% in the number of pores is expected. A significantly lower pore count reported at the start of sequencing can be due to contaminants in the library that have damaged the membranes or blocked the pores. Alternative DNA/RNA extraction or purification methods may be needed to improve the purity of the input material. The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. |
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW shows "Script failed" | Restart the computer and then restart MinKNOW. If the issue persists, please collect the MinKNOW log files and contact Technical Support. If you do not have another sequencing device available, we recommend storing the flow cell and the loaded library at 4°C and contact Technical Support for further storage guidance. |
Observation | Possible cause | Comments and actions |
---|---|---|
Pore occupancy <40% | Not enough library was loaded on the flow cell | Ensure you load the recommended amount of good quality library in the relevant library prep protocol onto your flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: µg to pmol" |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA | Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the sequencing kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents. |
Pore occupancy close to 0 | The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation | Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters. |
Pore occupancy close to 0 | No tether on the flow cell | Tethers are adding during flow cell priming (FLT/FCT tube). Make sure FLT/FCT was added to FB/FCF before priming. |
Observation | Possible cause | Comments and actions |
---|---|---|
Shorter than expected read length | Unwanted fragmentation of DNA sample | Read length reflects input DNA fragment length. Input DNA can be fragmented during extraction and library prep. 1. Please review the Extraction Methods in the Nanopore Community for best practice for extraction. 2. Visualise the input DNA fragment length distribution on an agarose gel before proceeding to the library prep. In the image above, Sample 1 is of high molecular weight, whereas Sample 2 has been fragmented. 3. During library prep, avoid pipetting and vortexing when mixing reagents. Flicking or inverting the tube is sufficient. |
Observation | Possible cause | Comments and actions |
---|---|---|
Large proportion of unavailable pores (shown as blue in the channels panel and pore activity plot) The pore activity plot above shows an increasing proportion of "unavailable" pores over time. |
Contaminants are present in the sample | Some contaminants can be cleared from the pores by the unblocking function built into MinKNOW. If this is successful, the pore status will change to "sequencing pore". If the portion of unavailable pores stays large or increases: 1. A nuclease flush using the Flow Cell Wash Kit (EXP-WSH004) can be performed, or 2. Run several cycles of PCR to try and dilute any contaminants that may be causing problems. |
Observation | Possible cause | Comments and actions |
---|---|---|
Large proportion of inactive/unavailable pores (shown as light blue in the channels panel and pore activity plot. Pores or membranes are irreversibly damaged) | Air bubbles have been introduced into the flow cell | Air bubbles introduced through flow cell priming and library loading can irreversibly damage the pores. Watch the Priming and loading your flow cell video for best practice |
Large proportion of inactive/unavailable pores | Certain compounds co-purified with DNA | Known compounds, include polysaccharides, typically associate with plant genomic DNA. 1. Please refer to the Plant leaf DNA extraction method. 2. Clean-up using the QIAGEN PowerClean Pro kit. 3. Perform a whole genome amplification with the original gDNA sample using the QIAGEN REPLI-g kit. |
Large proportion of inactive/unavailable pores | Contaminants are present in the sample | The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. |
Observation | Possible cause | Comments and actions |
---|---|---|
Reduction in sequencing speed and q-score later into the run | For Kit 9 chemistry (e.g. SQK-LSK109), fast fuel consumption is typically seen when the flow cell is overloaded with library (please see the appropriate protocol for your DNA library to see the recommendation). | Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell. |
Observation | Possible cause | Comments and actions |
---|---|---|
Temperature fluctuation | The flow cell has lost contact with the device | Check that there is a heat pad covering the metal plate on the back of the flow cell. Re-insert the flow cell and press it down to make sure the connector pins are firmly in contact with the device. If the problem persists, please contact Technical Services. |
Observation | Possible cause | Comments and actions |
---|---|---|
MinKNOW shows "Failed to reach target temperature" | The instrument was placed in a location that is colder than normal room temperature, or a location with poor ventilation (which leads to the flow cells overheating) | MinKNOW has a default timeframe for the flow cell to reach the target temperature. Once the timeframe is exceeded, an error message will appear and the sequencing experiment will continue. However, sequencing at an incorrect temperature may lead to a decrease in throughput and lower q-scores. Please adjust the location of the sequencing device to ensure that it is placed at room temperature with good ventilation, then re-start the process in MinKNOW. Please refer to this link for more information on MinION temperature control. |
Observation | Possible cause | Comments and actions |
---|---|---|
No input .fast5 was found or basecalled | input_path did not point to the .fast5 file location | The --input_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH. |
No input .fast5 was found or basecalled | The .fast5 files were in a subfolder at the input_path location | To allow Guppy to look into subfolders, add the --recursive flag to the command |
Observation | Possible cause | Comments and actions |
---|---|---|
No Pass or Fail folders were generated after basecalling | The --qscore_filtering flag was not included in the command | The --qscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders. |
Observation | Possible cause | Comments and actions |
---|---|---|
Unusually slow processing on a GPU computer | The --device flag wasn't included in the command | The --device flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example is --device cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command. |
Purchase a MinION Starter Pack from Avantor to get full community access and benefit from:
Already have a Nanopore Community account?
Log in hereRequest a call with our experts for detailed advice on implementing nanopore sequencing.
Request a callVisit our microbial sequencing spotlight page on vwr.com.
Microbial sequencingWe use cookies and similar technologies on our websites to help provide you with the best possible online experience.
By using our sites and apps, you agree that we may store and access cookies and similar technologies on your device.